SWOT INSTITUTE VECTOR ALGEBRA XII-TEST

Time : 1 hr.

- 1. Show that the vectors $2\hat{i}-3\hat{j}+4\hat{k}$ and $-4\hat{i}+6\hat{j}=8\hat{k}$ are collinear.
- 2. Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes OX, OY and OZ.
- 3. Find the position vector of the mid point of the vector joining the points P(2, 3, 4) and Q(4, 1, -2).
- 4. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of \vec{a} . $\vec{b} + \vec{b}$. $\vec{c} + \vec{c}$. \vec{a} .
- 5. Show that the vectors $2\hat{i}-\hat{j}+\hat{k}$, $\hat{i}-3\hat{j}-5\hat{k}$ and $3\hat{i}-4\hat{j}-4\hat{k}$ from the vertices of right angled triangle.
- 6. Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.
- 7. Find λ and μ if $(2\hat{i}+6\hat{j}+27\hat{k})\times(\hat{i}+\lambda\hat{j}+\mu\hat{k})=\vec{0}$.
- 8. Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5, 5).
- 9. Find the area of a parallelogram whose adjacent sides are given by the vectors $\vec{a} = 3\hat{i} + \hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j} + \hat{k}$.
- 10. Three vectors \vec{a} , \vec{b} and \vec{c} satisfy the condition $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. Evaluate the quantity $\mu = \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$, if $|\vec{a}| = 1$, $|\vec{b}| = 4$ and $|\vec{c}| = 2$.
- 11. If with reference to the right handed system of mutually perpendicular unit vectors \hat{i}, \hat{j} and $\hat{k}, \vec{\alpha} = 3\hat{i} \hat{j}, \quad \vec{\beta} = 2\hat{i} + \hat{j} 3\hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta} = \vec{\beta_1} + \vec{\beta_2}$, where $\vec{\beta_1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta_2}$ is perpendicular to $\vec{\alpha}$.