SWOT INSTITUTE
 VECTOR ALGEBRA
 XII-TEST

Time : 1 hr .

1. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}=8 \hat{k}$ are collinear.
2. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes $O X, O Y$ and $O Z$.
3. Find the position vector of the mid point of the vector joining the points $P(2,3,4)$ and $Q(4,1,-2)$.
4. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$.
5. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ from the vertices of right angled triangle.
6. Find the magnitude of two vectors \vec{a} and \vec{b}, having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.
7. Find λ and μ if $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=0$.
8. Find the area of the triangle with vertices $A(1,1,2), B(2,3,5)$ and $C(1,5,5)$.
9. Find the area of a parallelogram whose adjacent sides are given by vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.
10. Three vectors \vec{a}, \vec{b} and \vec{c} satisfy the condition $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Evaluate the quantity $\mu=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$, if $|\vec{a}|=1,|\vec{b}|=4$ and $|\vec{c}|=2$.
11. If with reference to the right handed system of mutually perpendicular unit vectors \hat{i}, \hat{j} and $\hat{k}, \vec{\alpha}=3 \hat{i}-\hat{j}, \quad \vec{\beta}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express $\vec{\beta}$ in the form $\vec{\beta}=\overrightarrow{\beta_{1}}+\overrightarrow{\beta_{2}}$, where $\vec{\beta}_{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ is perpendicular to $\vec{\alpha}$.
